Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
1.
J Control Release ; 359: 1-11, 2023 07.
Article in English | MEDLINE | ID: covidwho-20242830

ABSTRACT

Data show a decrease in the risk of hospitalization and death from COVID-19. To date, global vaccinations for SARS-CoV-2 protections are underway, but additional treatments are urgently needed to prevent and cure infection among naïve and even vaccinated people. Neutralizing monoclonal antibodies are very promising for prophylaxis and therapy of SARS-CoV-2 infections. However, traditional large-scale methods of producing such antibodies are slow, extremely expensive and possess a high risk of contamination with viruses, prions, oncogenic DNA and other pollutants. The present study is aimed at developing an approach of producing monoclonal antibodies (mAbs) against SARS-CoV-2 spike (S) protein in plant systems which offers unique advantages, such as the lack of human and animal pathogens or bacterial toxins, relatively low-cost manufacturing, and ease of production scale-up. We selected a single N-terminal domain functional camelid-derived heavy (H)-chain antibody fragments (VHH, AKA nanobodies) targeted to receptor binding domain of SARS-CoV-2 spike protein and developed methods of their rapid production using transgenic plants and plant cell suspensions. Isolated and purified plant-derived VHH antibodies were compared with mAbs produced in traditional mammalian and bacterial expression systems. It was found that plant generated VHH using the proposed methods of transformation and purification possess the ability to bind to SARS-CoV-2 spike protein comparable to that of monoclonal antibodies derived from bacterial and mammalian cell cultures. The results of the present studies confirm the visibility of producing monoclonal single-chain antibodies with a high ability to bind the targeted COVID-19 spike protein in plant systems within a relatively shorter time span and at a lower cost when compared with traditional methods. Moreover, similar plant biotechnology approaches can be used for producing monoclonal neutralizing antibodies against other types of viruses.


Subject(s)
COVID-19 , Single-Domain Antibodies , Humans , Animals , SARS-CoV-2 , Antibodies, Viral , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing , Mammals/metabolism
2.
Proc Natl Acad Sci U S A ; 120(24): e2216612120, 2023 06 13.
Article in English | MEDLINE | ID: covidwho-20239834

ABSTRACT

Nanobodies bind a target antigen with a kinetic profile similar to a conventional antibody, but exist as a single heavy chain domain that can be readily multimerized to engage antigen via multiple interactions. Presently, most nanobodies are produced by immunizing camelids; however, platforms for animal-free production are growing in popularity. Here, we describe the development of a fully synthetic nanobody library based on an engineered human VH3-23 variable gene and a multispecific antibody-like format designed for biparatopic target engagement. To validate our library, we selected nanobodies against the SARS-CoV-2 receptor-binding domain and employed an on-yeast epitope binning strategy to rapidly map the specificities of the selected nanobodies. We then generated antibody-like molecules by replacing the VH and VL domains of a conventional antibody with two different nanobodies, designed as a molecular clamp to engage the receptor-binding domain biparatopically. The resulting bispecific tetra-nanobody immunoglobulins neutralized diverse SARS-CoV-2 variants with potencies similar to antibodies isolated from convalescent donors. Subsequent biochemical analyses confirmed the accuracy of the on-yeast epitope binning and structures of both individual nanobodies, and a tetra-nanobody immunoglobulin revealed that the intended mode of interaction had been achieved. This overall workflow is applicable to nearly any protein target and provides a blueprint for a modular workflow for the development of multispecific molecules.


Subject(s)
COVID-19 , Single-Domain Antibodies , Humans , Single-Domain Antibodies/chemistry , Saccharomyces cerevisiae/metabolism , SARS-CoV-2 , Antibodies , Epitopes
3.
Anal Chem ; 95(23): 8747-8751, 2023 06 13.
Article in English | MEDLINE | ID: covidwho-20238542

ABSTRACT

Proteoforms expand genomic diversity and direct developmental processes. While high-resolution mass spectrometry has accelerated characterization of proteoforms, molecular techniques working to bind and disrupt the function of specific proteoforms have lagged behind. In this study, we worked to develop intrabodies capable of binding specific proteoforms. We employed a synthetic camelid nanobody library expressed in yeast to identify nanobody binders of different SARS-CoV-2 receptor binding domain (RBD) proteoforms. Importantly, employment of the positive and negative selection mechanisms inherent to the synthetic system allowed for amplification of nanobody-expressing yeast that bind to the original (Wuhan strain RBD) but not the E484 K (Beta variant) mutation. Nanobodies raised against specific RBD proteoforms were validated by yeast-2-hybrid analysis and sequence comparisons. These results provide a framework for development of nanobodies and intrabodies that target proteoforms.


Subject(s)
COVID-19 , Single-Domain Antibodies , Humans , Single-Domain Antibodies/metabolism , SARS-CoV-2/metabolism , Saccharomyces cerevisiae/metabolism
4.
Microb Cell Fact ; 22(1): 103, 2023 May 19.
Article in English | MEDLINE | ID: covidwho-2321686

ABSTRACT

BACKGROUND: The filamentous fungus Trichoderma reesei has been used as a host organism for the production of lignocellulosic biomass-degrading enzymes. Although this microorganism has high potential for protein production, it has not yet been widely used for heterologous recombinant protein production. Transcriptional induction of the cellulase genes is essential for high-level protein production in T. reesei; however, glucose represses this transcriptional induction. Therefore, cellulose is commonly used as a carbon source for providing its degraded sugars such as cellobiose, which act as inducers to activate the strong promoters of the major cellulase (cellobiohydrolase 1 and 2 (cbh1 and cbh2) genes. However, replacement of cbh1 and/or cbh2 with a gene encoding the protein of interest (POI) for high productivity and occupancy of recombinant proteins remarkably impairs the ability to release soluble inducers from cellulose, consequently reducing the production of POI. To overcome this challenge, we first used an inducer-free biomass-degrading enzyme expression system, previously developed to produce cellulases and hemicellulases using glucose as the sole carbon source, for recombinant protein production using T. reesei. RESULTS: We chose endogenous secretory enzymes and heterologous camelid small antibodies (nanobody) as model proteins. By using the inducer-free strain as a parent, replacement of cbh1 with genes encoding two intrinsic enzymes (aspartic protease and glucoamylase) and three different nanobodies (1ZVH, caplacizumab, and ozoralizumab) resulted in their high secretory productions using glucose medium without inducers such as cellulose. Based on signal sequences (carrier polypeptides) and protease inhibitors, additional replacement of cbh2 with the nanobody gene increased the percentage of POI to about 20% of total secreted proteins in T. reesei. This allowed the production of caplacizumab, a bivalent nanobody, to be increased to 9.49-fold (508 mg/L) compared to the initial inducer-free strain. CONCLUSIONS: In general, whereas the replacement of major cellulase genes leads to extreme decrease in the degradation capacity of cellulose, our inducer-free system enabled it and achieved high secretory production of POI with increased occupancy in glucose medium. This system would be a novel platform for heterologous recombinant protein production in T. reesei.


Subject(s)
Cellulase , Single-Domain Antibodies , Trichoderma , Cellulase/genetics , Cellulase/metabolism , Glucose/metabolism , Single-Domain Antibodies/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Cellulose/metabolism , Trichoderma/metabolism
5.
FASEB J ; 37(6): e22973, 2023 06.
Article in English | MEDLINE | ID: covidwho-2313274

ABSTRACT

SARS-CoV-2 is the etiological agent of the COVID-19 pandemic. Antibody-based therapeutics targeting the spike protein, specifically the S1 subunit or the receptor binding domain (RBD) of SARS-CoV-2, have gained attention due to their clinical efficacy in treating patients diagnosed with COVID-19. An alternative to conventional antibody therapeutics is the use of shark new antigen variable receptor domain (VNAR ) antibodies. VNAR s are small (<15 kDa) and can reach deep into the pockets or grooves of the target antigen. Here, we have isolated 53 VNAR s that bind to the S2 subunit by phage panning from a naïve nurse shark VNAR phage display library constructed in our laboratory. Among those binders, S2A9 showed the best neutralization activity against the original pseudotyped SARS-CoV-2 virus. Several binders, including S2A9, showed cross-reactivity against S2 subunits from other ß coronaviruses. Furthermore, S2A9 showed neutralization activity against all variants of concern (VOCs) from alpha to omicron (including BA1, BA2, BA4, and BA5) in both pseudovirus and live virus neutralization assays. Our findings suggest that S2A9 could be a promising lead molecule for the development of broadly neutralizing antibodies against SARS-CoV-2 and emerging variants. The nurse shark VNAR phage library offers a novel platform that can be used to rapidly isolate single-domain antibodies against emerging viral pathogens.


Subject(s)
Bacteriophages , COVID-19 , Single-Domain Antibodies , Humans , SARS-CoV-2 , Pandemics , Antibodies , Antibodies, Viral , Antibodies, Neutralizing
6.
ACS Nano ; 17(10): 9167-9177, 2023 05 23.
Article in English | MEDLINE | ID: covidwho-2320864

ABSTRACT

Nanopores are label-free single-molecule analytical tools that show great potential for stochastic sensing of proteins. Here, we described a ClyA nanopore functionalized with different nanobodies through a 5-6 nm DNA linker at its periphery. Ty1, 2Rs15d, 2Rb17c, and nb22 nanobodies were employed to specifically recognize the large protein SARS-CoV-2 Spike, a medium-sized HER2 receptor, and the small protein murine urokinase-type plasminogen activator (muPA), respectively. The pores modified with Ty1, 2Rs15d, and 2Rb17c were capable of stochastic sensing of Spike protein and HER2 receptor, respectively, following a model where unbound nanobodies, facilitated by a DNA linker, move inside the nanopore and provoke reversible blockade events, whereas engagement with the large- and medium-sized proteins outside of the pore leads to a reduced dynamic movement of the nanobodies and an increased current through the open pore. Exploiting the multivalent interaction between trimeric Spike protein and multimerized Ty1 nanobodies enabled the detection of picomolar concentrations of Spike protein. In comparison, detection of the smaller muPA proteins follows a different model where muPA, complexing with the nb22, moves into the pore, generating larger blockage signals. Importantly, the components in blood did not affect the sensing performance of the nanobody-functionalized nanopore, which endows the pore with great potential for clinical detection of protein biomarkers.


Subject(s)
COVID-19 , Nanopores , Single-Domain Antibodies , Mice , Animals , Single-Domain Antibodies/metabolism , Spike Glycoprotein, Coronavirus , SARS-CoV-2 , Proteins , DNA
7.
Fish Shellfish Immunol ; 138: 108807, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2316095

ABSTRACT

The COVID-19 pandemic has significantly impacted human health for three years. To mitigate the spread of SARS-CoV-2, the development of neutralizing antibodies has been accelerated, including the exploration of alternative antibody formats such as single-domain antibodies. In this study, we identified variable new antigen receptors (VNARs) specific for the receptor binding domain (RBD) of SARS-CoV-2 by immunizing a banded houndshark (Triakis scyllium) with recombinant wild-type RBD. Notably, the CoV2NAR-1 clone showed high binding affinities in the nanomolar range to various RBDs and demonstrated neutralizing activity against SARS-CoV-2 pseudoviruses. These results highlight the potential of the banded houndshark as an animal model for the development of VNAR-based therapeutics or diagnostics against future pandemics.


Subject(s)
COVID-19 , Single-Domain Antibodies , Humans , Animals , SARS-CoV-2/metabolism , Antibodies, Viral , Pandemics , Antibodies, Neutralizing
8.
Protein Expr Purif ; 207: 106267, 2023 07.
Article in English | MEDLINE | ID: covidwho-2302124

ABSTRACT

Coronavirus Papain-like protease (PLpro) mediates the cleavage of viral polyproteins and assists the virus escaping from innate immune response. Thus, PLpro is an attractive target for the development of broad-spectrum drugs as it has a conserved structure across different coronaviruses. In this study, we purified SARS-CoV-2 PLpro as an immune antigen, constructed a nanobody phage display library, and identified a set of nanobodies with high affinity for SARS-CoV-2. In addition, enzyme activity experiments demonstrated that two nanobodies had a significant inhibitory effect on the PLpro. These nanobodies should therefore be investigated as candidates for the treatment of coronaviruses.


Subject(s)
COVID-19 , Single-Domain Antibodies , Humans , Coronavirus Papain-Like Proteases , SARS-CoV-2 , Peptide Hydrolases , Papain/chemistry
9.
Front Biosci (Landmark Ed) ; 28(4): 67, 2023 04 06.
Article in English | MEDLINE | ID: covidwho-2306615

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide, caused a global pandemic, and killed millions of people. The spike protein embedded in the viral membrane is essential for recognizing human receptors and invading host cells. Many nanobodies have been designed to block the interaction between spike and other proteins. However, the constantly emerging viral variants limit the effectiveness of these therapeutic nanobodies. Therefore, it is necessary to find a prospective antibody designing and optimization approach to deal with existing or future viral variants. METHODS: We attempted to optimize nanobody sequences based on the understanding of molecular details by using computational approaches. First, we employed a coarse-grained (CG) model to learn the energetic mechanism of the spike protein activation. Next, we analyzed the binding modes of several representative nanobodies with the spike protein and identified the key residues on their interfaces. Then, we performed saturated mutagenesis of these key residue sites and employed the CG model to calculate the binding energies. RESULTS: Based on analysis of the folding energy of the angiotensin-converting enzyme 2 (ACE2) -spike complex, we constructed a detailed free energy profile of the activation process of the spike protein which provided a clear mechanistic explanation. In addition, by analyzing the results of binding free energy changes following mutations, we determined how the mutations can improve the complementarity with the nanobodies on spike protein. Then we chose 7KSG nanobody as a template for further optimization and designed four potent nanobodies. Finally, based on the results of the single-site saturated mutagenesis in complementarity determining regions (CDRs), combinations of mutations were performed. We designed four novel, potent nanobodies, all exhibiting higher binding affinity to the spike protein than the original ones. CONCLUSIONS: These results provide a molecular basis for the interactions between spike protein and antibodies and promote the development of new specific neutralizing nanobodies.


Subject(s)
COVID-19 , Single-Domain Antibodies , Humans , SARS-CoV-2 , Single-Domain Antibodies/genetics , Single-Domain Antibodies/metabolism , Spike Glycoprotein, Coronavirus/genetics , Prospective Studies , Protein Binding
10.
J Biotechnol ; 366: 72-84, 2023 Mar 20.
Article in English | MEDLINE | ID: covidwho-2276403

ABSTRACT

The COVID-19 pandemic has greatly impacted the global economy and health care systems, illustrating the urgent need for timely and inexpensive responses to pandemic threats in the form of vaccines and antigen tests. Currently, antigen testing is mostly conducted by qualitative flow chromatography or via quantitative ELISA-type assays. The latter mostly utilize materials like protein-adhesive polymers and gold or latex particles. Here we present an alternative ELISA approach using inexpensive, biogenic materials and permitting quick detection based on components produced in the microbial model Ustilago maydis. In this fungus, heterologous proteins like biopharmaceuticals can be exported by fusion to unconventionally secreted chitinase Cts1. As a unique feature, the carrier chitinase binds to chitin allowing its additional use as a purification or immobilization tag. Recent work has demonstrated that nanobodies are suitable target proteins. These proteins represent a very versatile alternative antibody format and can quickly be adapted to detect novel antigens by camelidae immunization or synthetic libraries. In this study, we exemplarily produced different mono- and bivalent SARS-CoV-2 nanobodies directed against the spike protein receptor binding domain (RBD) as Cts1 fusions and screened their antigen binding affinity in vitro and in vivo. Functional nanobody-Cts1 fusions were immobilized on chitin forming an RBD tethering surface. This provides a solid base for future development of inexpensive antigen tests utilizing unconventionally secreted nanobodies as antigen trap and a matching ubiquitous and biogenic surface for immobilization.


Subject(s)
COVID-19 , Chitinases , Single-Domain Antibodies , Ustilago , Humans , Ustilago/genetics , Ustilago/metabolism , Chitin/metabolism , Pandemics , SARS-CoV-2/metabolism , Chitinases/metabolism
11.
Front Immunol ; 14: 1098302, 2023.
Article in English | MEDLINE | ID: covidwho-2275528

ABSTRACT

Single-domain antibodies (sdAbs, VHHs, or nanobodies) are a promising tool for the treatment of both infectious and somatic diseases. Their small size greatly simplifies any genetic engineering manipulations. Such antibodies have the ability to bind hard-to-reach antigenic epitopes through long parts of the variable chains, the third complementarity-determining regions (CDR3s). VHH fusion with the canonical immunoglobulin Fc fragment allows the Fc-fusion single-domain antibodies (VHH-Fc) to significantly increase their neutralizing activity and serum half-life. Previously we have developed and characterized VHH-Fc specific to botulinum neurotoxin A (BoNT/A), that showed a 1000-fold higher protective activity than monomeric form when challenged with five times the lethal dose (5 LD50) of BoNT/A. During the COVID-19 pandemic, mRNA vaccines based on lipid nanoparticles (LNP) as a delivery system have become an important translational technology that has significantly accelerated the clinical introduction of mRNA platforms. We have developed an mRNA platform that provides long-term expression after both intramuscular and intravenous application. The platform has been extensively characterized using firefly luciferase (Fluc) as a reporter. An intramuscular administration of LNP-mRNA encoding VHH-Fc antibody made it possible to achieve its rapid expression in mice and resulted in 100% protection when challenged with up to 100 LD50 of BoNT/A. The presented approach for the delivery of sdAbs using mRNA technology greatly simplifies drug development for antibody therapy and can be used for emergency prophylaxis.


Subject(s)
Botulinum Toxins, Type A , COVID-19 , Single-Domain Antibodies , Animals , Humans , Mice , Single-Domain Antibodies/genetics , Pandemics , Dose-Response Relationship, Drug
12.
Proc Natl Acad Sci U S A ; 119(48): e2212658119, 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2265470

ABSTRACT

Protein glycosylation is a crucial mediator of biological functions and is tightly regulated in health and disease. However, interrogating complex protein glycoforms is challenging, as current lectin tools are limited by cross-reactivity while mass spectrometry typically requires biochemical purification and isolation of the target protein. Here, we describe a method to identify and characterize a class of nanobodies that can distinguish glycoforms without reactivity to off-target glycoproteins or glycans. We apply this technology to immunoglobulin G (IgG) Fc glycoforms and define nanobodies that specifically recognize either IgG lacking its core-fucose or IgG bearing terminal sialic acid residues. By adapting these tools to standard biochemical methods, we can clinically stratify dengue virus and SARS-CoV-2 infected individuals based on their IgG glycan profile, selectively disrupt IgG-Fcγ receptor binding both in vitro and in vivo, and interrogate the B cell receptor (BCR) glycan structure on living cells. Ultimately, we provide a strategy for the development of reagents to identify and manipulate IgG Fc glycoforms.


Subject(s)
COVID-19 , Single-Domain Antibodies , Humans , Immunoglobulin G/metabolism , SARS-CoV-2 , Immunoglobulin Fc Fragments/metabolism , Polysaccharides/metabolism
13.
Sheng Wu Gong Cheng Xue Bao ; 38(9): 3173-3193, 2022 Sep 25.
Article in Chinese | MEDLINE | ID: covidwho-2254670

ABSTRACT

Coronavirus disease (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), with strong contagiousness, high susceptibility and long incubation period. cell entry by SARS-CoV-2 requires the binding between the receptor-binding domain of the viral spike protein and the cellular angiotensin-converting enzyme 2 (ACE2). Here, we briefly reviewed the mechanisms underlying the interaction between SARS-CoV-2 and ACE2, and summarized the latest research progress on SARS-CoV-2 neutralizing monoclonal antibodies and nanobodies, so as to better understand the development process and drug research direction of COVID-19. This review may facilitate understanding the development of neutralizing antibody drugs for emerging infectious diseases, especially for COVID-19.


Subject(s)
COVID-19 , Single-Domain Antibodies , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Humans , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
14.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: covidwho-2246813

ABSTRACT

The worldwide spread of COVID-19 continues to impact our lives and has led to unprecedented damage to global health and the economy. This highlights the need for an efficient approach to rapidly develop therapeutics and prophylactics against SARS-CoV-2. We modified a single-domain antibody, SARS-CoV-2 VHH, to the surface of the liposomes. These immunoliposomes demonstrated a good neutralizing ability, but could also carry therapeutic compounds. Furthermore, we used the 2019-nCoV RBD-SD1 protein as an antigen with Lip/cGAMP as the adjuvant to immunize mice. Lip/cGAMP enhanced the immunity well. It was demonstrated that the combination of RBD-SD1 and Lip/cGAMP was an effective preventive vaccine. This work presented potent therapeutic anti-SARS-CoV-2 drugs and an effective vaccine to prevent the spread of COVID-19.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Single-Domain Antibodies , Animals , Mice , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/therapeutic use , COVID-19/therapy , Liposomes/immunology , SARS-CoV-2/immunology , Single-Domain Antibodies/therapeutic use
15.
Biochem Pharmacol ; 208: 115401, 2023 02.
Article in English | MEDLINE | ID: covidwho-2246221

ABSTRACT

Global health and economy are deeply influenced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its newly emerging variants. Nanobodies with nanometer-scale size are promising for the detection and treatment of SARS-CoV-2 and its variants because they are superior to conventional antibodies in terms of cryptic epitope accessibility, tissue penetration, cost, formatting adaptability, and especially protein stability, which enables their aerosolized specific delivery to lung tissues. This review summarizes the progress in the prevention, detection, and treatment of SARS-CoV-2 using nanobodies, as well as strategies to combat the evolving SARS-CoV-2 variants. Generally, highly efficient generation of potent broad-spectrum nanobodies targeting conserved epitopes or further construction of multivalent formats targeting non-overlapping epitopes can promote neutralizing activity against SARS-CoV-2 variants and suppress immune escape.


Subject(s)
COVID-19 , Single-Domain Antibodies , Humans , SARS-CoV-2 , Single-Domain Antibodies/therapeutic use , COVID-19/prevention & control , Epitopes , Antibodies, Neutralizing/therapeutic use
16.
Int J Nanomedicine ; 18: 353-367, 2023.
Article in English | MEDLINE | ID: covidwho-2232746

ABSTRACT

Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants have risen to dominance, which contains far more mutations in the spike protein in comparison to previously reported variants, compromising the efficacy of most existing vaccines or therapeutic monoclonal antibodies. Nanobody screened from high-throughput naïve libraries is a potential candidate for developing preventive and therapeutic antibodies. Methods: Four nanobodies specific to the SARS-CoV-2 wild-type receptor-binding domain (RBD) were screened from a naïve phage display library. Their affinity and neutralizing activity were evaluated by surface plasmon resonance assays, surrogate virus neutralization tests, and pseudovirus neutralization assays. Preliminary identification of the binding epitopes of nanobodies by peptide-based ELISA and competition assay. Then four multivalent nanobodies were engineered by attaching the monovalent nanobodies to an antibody-binding nanoplatform constructed based on the lumazine synthase protein cage nanoparticles isolated from the Aquifex aeolicus (AaLS). Finally, the differences in potency between the monovalent and multivalent nanobodies were compared using the same methods. Results: Three of the four specific nanobodies could maintain substantial inhibitory activity against the Omicron (B.1.1.529), of them, B-B2 had the best neutralizing activity against the Omicron (B.1.1.529) pseudovirus (IC50 = 1.658 µg/mL). The antiviral ability of multivalent nanobody LS-B-B2 was improved in the Omicron (B.1.1.529) pseudovirus assays (IC50 = 0.653 µg/mL). The results of peptide-based ELISA indicated that LS-B-B2 might react with the linear epitopes in the SARS-CoV-2 RBD conserved regions, which would clarify the mechanisms for the maintenance of potent neutralization of Omicron (B.1.1.529) preliminary. Conclusion: Our study indicated that the AaLS could be used as an antibody-binding nanoplatform to present nanobodies on its surface and improve the potency of nanobodies. The multivalent nanobody LS-B-B2 may serve as a potential agent for the neutralization of SARS-CoV-2 variants.


Subject(s)
COVID-19 , Single-Domain Antibodies , Humans , SARS-CoV-2 , Epitopes , Antibodies, Neutralizing , Antibodies, Viral
17.
Nat Commun ; 14(1): 580, 2023 02 03.
Article in English | MEDLINE | ID: covidwho-2228819

ABSTRACT

Despite rapid and ongoing vaccine and therapeutic development, SARS-CoV-2 continues to evolve and evade, presenting a need for next-generation diverse therapeutic modalities. Here we show that nurse sharks immunized with SARS-CoV-2 recombinant receptor binding domain (RBD), RBD-ferritin (RFN), or spike protein ferritin nanoparticle (SpFN) immunogens elicit a set of new antigen receptor antibody (IgNAR) molecules that target two non-overlapping conserved epitopes on the spike RBD. Representative shark antibody variable NAR-Fc chimeras (ShAbs) targeting either of the two epitopes mediate cell-effector functions, with high affinity to all SARS-CoV-2 viral variants of concern, including the divergent Omicron strains. The ShAbs potently cross-neutralize SARS-CoV-2 WA-1, Alpha, Beta, Delta, Omicron BA.1 and BA.5, and SARS-CoV-1 pseudoviruses, and confer protection against SARS-CoV-2 challenge in the K18-hACE2 transgenic mouse model. Structural definition of the RBD-ShAb01-ShAb02 complex enabled design and production of multi-specific nanobodies with enhanced neutralization capacity, and picomolar affinity to divergent sarbecovirus clade 1a, 1b and 2 RBD molecules. These shark nanobodies represent potent immunotherapeutics both for current use, and future sarbecovirus pandemic preparation.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Single-Domain Antibodies , Animals , Mice , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Epitopes , Ferritins/genetics , Immunoglobulin Fc Fragments , Mice, Transgenic , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Sharks
18.
J Biol Chem ; 299(3): 102954, 2023 03.
Article in English | MEDLINE | ID: covidwho-2210672

ABSTRACT

COVID-19, caused by the coronavirus SARS-CoV-2, represents a serious worldwide health issue, with continually emerging new variants challenging current therapeutics. One promising alternate therapeutic avenue is represented by nanobodies, small single-chain antibodies derived from camelids with numerous advantageous properties and the potential to neutralize the virus. For identification and characterization of a broad spectrum of anti-SARS-CoV-2 Spike nanobodies, we further optimized a yeast display method, leveraging a previously published mass spectrometry-based method, using B-cell complementary DNA from the same immunized animals as a source of VHH sequences. Yeast display captured many of the sequences identified by the previous approach, as well as many additional sequences that proved to encode a large new repertoire of nanobodies with high affinities and neutralization activities against different SARS-CoV-2 variants. We evaluated DNA shuffling applied to the three complementarity-determining regions of antiviral nanobodies. The results suggested a surprising degree of modularity to complementarity-determining region function. Importantly, the yeast display approach applied to nanobody libraries from immunized animals allows parallel interrogation of a vast number of nanobodies. For example, we employed a modified yeast display to carry out massively parallel epitope binning. The current yeast display approach proved comparable in efficiency and specificity to the mass spectrometry-based approach, while requiring none of the infrastructure and expertise required for that approach, making these highly complementary approaches that together appear to comprehensively explore the paratope space. The larger repertoires produced maximize the likelihood of discovering broadly specific reagents and those that powerfully synergize in mixtures.


Subject(s)
Antibodies, Neutralizing , SARS-CoV-2 , Single-Domain Antibodies , Animals , Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , Complementarity Determining Regions , Saccharomyces cerevisiae/genetics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Single-Domain Antibodies/genetics , Spike Glycoprotein, Coronavirus/immunology
19.
Nat Commun ; 13(1): 7957, 2022 12 27.
Article in English | MEDLINE | ID: covidwho-2185833

ABSTRACT

As SARS-CoV-2 Omicron and other variants of concern (VOCs) continue spreading worldwide, development of antibodies and vaccines to confer broad and protective activity is a global priority. Here, we report on the identification of a special group of nanobodies from immunized alpaca with potency against diverse VOCs including Omicron subvariants BA.1, BA.2 and BA.4/5, SARS-CoV-1, and major sarbecoviruses. Crystal structure analysis of one representative nanobody, 3-2A2-4, discovers a highly conserved epitope located between the cryptic and the outer face of the receptor binding domain (RBD), distinctive from the receptor ACE2 binding site. Cryo-EM and biochemical evaluation reveal that 3-2A2-4 interferes structural alteration of RBD required for ACE2 binding. Passive delivery of 3-2A2-4 protects K18-hACE2 mice from infection of authentic SARS-CoV-2 Delta and Omicron. Identification of these unique nanobodies will inform the development of next generation antibody therapies and design of pan-sarbecovirus vaccines.


Subject(s)
COVID-19 , Camelids, New World , Severe acute respiratory syndrome-related coronavirus , Single-Domain Antibodies , Animals , Mice , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , COVID-19/prevention & control , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus , Antibodies, Viral
20.
Cell Rep Med ; 4(2): 100918, 2023 02 21.
Article in English | MEDLINE | ID: covidwho-2184477

ABSTRACT

With the widespread vaccinations against coronavirus disease 2019 (COVID-19), we are witnessing gradually waning neutralizing antibodies and increasing cases of breakthrough infections, necessitating the development of drugs aside from vaccines, particularly ones that can be administered outside of hospitals. Here, we present two cross-reactive nanobodies (R14 and S43) and their multivalent derivatives, including decameric ones (fused to the immunoglobulin M [IgM] Fc) that maintain potent neutralizing activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) after aerosolization and display not only pan-SARS-CoV-2 but also varied pan-sarbecovirus activities. Through respiratory administration to mice, monovalent and decameric R14 significantly reduce the lung viral RNAs at low dose and display potent pre- and post-exposure protection. Furthermore, structural studies reveal the neutralizing mechanisms of R14 and S43 and the multiple inhibition effects that the multivalent derivatives exert. Our work demonstrates promising convenient drug candidates via respiratory administration against SARS-CoV-2 infection, which can contribute to containing the COVID-19 pandemic.


Subject(s)
COVID-19 , Single-Domain Antibodies , Animals , Mice , Humans , SARS-CoV-2 , Pandemics , Antibodies, Neutralizing , Immunoglobulin Fc Fragments
SELECTION OF CITATIONS
SEARCH DETAIL